INDIAN SCHOOL MUSCAT

FIRST PRELIMINARY EXAMINATION

JANUARY 2019

SET A

CLASS XII

Marking Scheme – SUBJECT [THEORY]

Q.NO.	Answers	Marks (with split
		up)
1.	Dielectric constant (or relative permittivity) of a dielectric is the ratio of the absolute permittivity of a medium to the absolute permittivity of free space.(or any other relevant definition It is unit less quantity.	1
2.	The fractional change in Resistivity per degree change in the temperature from a substance's original temperature.	1
3.	Converging lens since refractive index of surrounding is greater than refractive index of lens.	1
	OR	
	deviation produced by violet is more than that of red light	
	Wavelength of red light is more than violet light	
	$\lambda \propto \frac{1}{}$	
	μ	
4	Refractive index of red is less than violet One ampere is that current which if passed in each of two parallel conductors of infinite length and one	1
4.	meter apart in vacuum, causes each conductor to experience a force of 2×10^{-7} Newton per meter of length of conductor.	1
5.	The output produced by square law device is passed to band pass filter which rejects the dc and the sinusoids of frequencies w_m , $2w_m$ and $2w_c$ and retains the frequencies w_c , $w_c - w_m$ and $w_c + w_m$. The output of band pass filter is an AM wave.	1
	OR	
	NAND and NOR gates .Because all the other basic gates like OR gate , AND gate and NOT gate can	
	be made from NAND and NOR gates.	
6.	The direction of induced current in a closed circuit is always such as to oppose the	1/2
	cause that produces it."	1/2
	Consider a bar magnet and a loop. The bar magnet experiences a repulsive force due to the	1
	current induced. Hence, some amount of work is done to move the magnet. The energy which	1
	is spent by the person in moving the magnet is dissipated by Joul's heating produced by	
	induced current. Therefore, the law of conservation of energy is validated.	
	OR (i) AC generator are simpler & cheaper than DC generator as commutator is not used in AC generator	
	(ii) AC Can be stepped up or down using transformer so its transmission is cheaper and efficient.	
7.	When a metallic plate is placed in a time varying magnetic field, the magnetic flux linked with the plate changes, the induced currents are set up in the plate; these currents are called eddy currents . Application of Eddy Currents(any two). No explanation required	2

8.	Deriving expression $I = neA v_d$	2
	OR Deriving expression	
	$(h, \cdot)_{-1}$	2
	$\mathbf{r} = \left(\frac{1}{l_2} - 1\right) \mathbf{R}$	
9.	$\mu = \frac{A_m}{A_c}$	1
	A_c	1
	Here $\mu = 60\% = \frac{3}{5}$ $\therefore A_m = \mu A_c = \frac{3}{5} \times 15V$	
	$A_{m} = \mu A_{n} = \frac{3}{4} \times 15V$	
	= 9V	
10.	$\delta = i + e - A$	1/2
	Since $e = i$. $\delta = 2i - A$	1/2
	0 - 21 - A	
	$\delta = 2 \times \frac{3}{4} A - A$ $\delta = \frac{1}{2} A \qquad \delta = \frac{1}{2} \times 60 = 30^{\circ}$	1/2
	$\delta = \frac{1}{2}A$ $\delta = \frac{1}{2} \times 60 = 30^{\circ}$	1/2
11.	In any radioactive sample, the number of nuclei undergoing the decay per unit time is	1
	proportional to the total number of nuclei in the sample.	1
	$N=N_c e^{-kt}$ $N=N_c e^{-kt}$ $N_0/2$ $N_0/4$ $N_0/8$ $N_0/16$ $N_0/8$ $N_0/16$ $N_0/8$ $N_0/16$ $N_0/8$ $N_0/16$	
12.	Proving λ	2
	$=\frac{h}{\sqrt{2maV}}$.	
13.	$\sqrt{2\text{meV}}$ (a) They acts as connecting point with no resistance	1
	(b) By obtaining balance point in the middle of bridge wire, percentage error in resistance	1
	can be minimized. (c) magnanin, Constantan	½+1/2
14.	(i) C=KC(explanation)	1/2+1/2
	(ii) V = V/K (explanation)	¹ / ₂ +1/2 ¹ / ₂ +1/2
15.	(iii) U = U/K (explanation) - (i)magnet is always a dipole and Net magnetic flux through any closed surface is	1
	zero.	1
	(ii)At poles(iii)It is the angle the total Earth's magnetic field makes with a horizontal line in	1/2
L	() - 2	

	magnetic meridian It is the component of t	otal intensity of Earth's magnetic field in the horizontal	1/2
	direction.	o.p.	
	Diagram for Obtaining an ownro	OR ssion for the magnetic field due to a circular coil carrying	
	current at a point along its axis		1
	Derivation	s using biot-savart law	
	Derivation		2
16.	(i)		1
	S.NO p-type semicondu	ctor n- type semiconductor	
	1 majority carriers	are majority carriers are	
	holes. n _h > n _e	electrons. n _e >n _h	
	2 mobility is less,		
	conductivity is less	conductivity ismore or any other 2	
	(ii) It is easier to observe the cha	nge in the current with change in the light intensity, if a reverse	1
		an be used as a photodetector to detect optical signals.	1
17.	(iii) any two advantages of LED i) Infra red rays, used for taking p	's over conventional incandescent lamps.	1
17.	ii) UV rays, used to sterilize surgi		1
		acture of bones , concealed contra band goods at air ports	1
18.	(a) The size of the antennas sl	nould be atleast $\lambda/4$ for high efficiency of signal radiation.	1
	This is because ground wave p	propagation is possible for radio waves of frequency band	1+1
	540 kHz to 1600 kHz. If the ba	nd signal frequency is 15 kHz, the height of the antenna	111
	would be 5000 which is impos	sible.	
	(b) To transmit audio signal co	nverted to electromagnetic signal, an antenna of atleast size	
	15 km is needed. This impract	cal and also signals of different transmitter would mix up.	
	(c) Modulation index, $\mu = V_m/$	v_c and its value should be less than 1.	
	•	odulating signal is kept less than the carrier waves so that no	
	distortion occurs in the modul	2	
		OR	
	(i) Since optical and radio w	aves can pass through the earth's atmosphere and reach	
	the surface, ground telescop	es are optical and radio telescopes But anysatellite	1
	_	n receive these X-rays. Therefore X-ray astronomy is	
	possible only from the satel	ites.	
	-		1
	• •	flected by the ionosphere, they can be used for long	
	distance radio broad cast.		1
	(iii) No, for light of sight con	nmunication , the two antenna may not be at same	1
	height.		

10	(i) gonon dio do	1	
19.	(i) zener diode (ii)	1	
		1	
	mA §		
	(iii) Brief explanation of zener diode as a voltage regulator.	1	
20.		1	
20.	fringes increases in proportion to the distance of the screen from the plane of the two slits.	1	
	(ii) The interference pattern gets less and less sharp, and when the source is brought too		
	close the fringes disappear. Till this happens, the fringe separation remains fixed.	1	
	(iii) The interference patterns due to different component colours of white light overlap		
	(incoherently). The central bright fringes for different colours are at the same position.		
	Therefore, the central fringe is white. The fringe closest on either side of the central white		
	fringe is red and the farthest will appear blue. After a few fringes, no clear fringe pattern is	1	
	seen.		
21.	(i)Total internal reflection	1	
	(ii)conditions for TIR	¹ / ₂ +1/2	
	(iii)		
	\rightarrow \leftarrow	1	
	Incident plane wavefront •		
	F F		
	Refracted spherical		
	wavefront of radius f	2	
	OR		
	(i) labeled diagram of reflecting type telescope	1	
22.	(ii) Any two advantages of reflecting type over refracting type telescope	1/2	
22.	For $r > OB$, force is repulsive. For $r > OB$, force is attractive.	72	
	Nuclear forces are	1/2	
	1 2 2 3 4 4 5 5 6 5 6 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	, 2	
	(ii) charge independent,	$\frac{1}{2} + \frac{1}{2}$	
	(iii)show saturation, and		
	(iv)spin dependent.(any 2)		
	(i) very strong, (ii) charge independent, (iii) show saturation, and (iv) spin dependent.(any 2)		
	-100		
	r (fm) (1)		
23.	(i) a) No change b)increases	1+1	
25.	(iii) blue light	1	
	(iii) oldo light	1	
24.	Cyclotron-labelled diagram	1	
	Principle	1	
	working		
		1	

	OR	1
	Moving coil galvanometer-labelled diagram	1
	Principle	1
	working	
		1/2
		1/2
		1
		1
25	(i) principle of a transformer (ii) Explanation of large scale transmission of electric angrey even lang distance done with	1
	(ii) Explanation of large scale transmission of electric energy over long distance done with the use of transformers	1
	(iii) any two sources of energy loss in a transformer (iv)	1
	Electric power available from the plant = $\eta \times h\rho gV$ = $0.6 \times 300 \times 10^3 \times 9.8 \times 100$	2
	= 176.4 × 10 ⁶ W	
	= 176.4 MW OR	
	(i) obtaining expression for the impedance of a series LCR circuit connected to an AC supply of variable frequency.	2
	(ii) Explanation of the phenomenon of resonance in the circuit in the tuning mechanism of a	1
	radio or a TV set. (iii)	1
	$\omega_{\rm r} = \frac{1}{\sqrt{1C}}$	1/2
	=	
	$\sqrt{2.0 \times 32 \times 10^{-6}}$	
	$=\frac{10^3}{8}$	
	= 125 rad/s	
	$Q = \frac{1}{R} \sqrt{\frac{L}{C}}$	

	$= \frac{1}{10} \sqrt{\frac{2}{32 \times 10^{-6}}}$	1/
	·	1/2
	$=\frac{1000}{40}$	
	= 25.	
		1/2
26	(i) Verifying Snell's law of refraction using Huygen's principle	1
	Labeled diagram	1
	(ii) any two conditions for two light sources to be coherent.(iii)	1
	The wavelength and frequency of the reflected light are the same as that of the incident light.	
	∴ Wavelength of reflected light = 5000 Å	
	Frequency of reflected light, $V = c/\lambda$	
	3 × 10 ⁸	
	$= \frac{3 \times 10^8}{5000 \times 10^{-10}} Hz$	1
	$= 6 \times 10^{14} Hz$	
	When, the reflected ray is normal to the incident ray, i + r = 90°	1
	i + i = 90°	
	2i = 90°	
	i.e., i = 45°.	
	OR	
	(i) ray diagram for the formation of image of a point object by a thin double convex lens	3
	having radii of curvature R_1 and R_2 .	3
	deriving lens maker's formula for a double convex lens. (ii)	
	Size of object, O = 3.0 cm	
	Object distance, u = - 14 cm	
	Focal length, f = - 21 cm	

		1/
	$\frac{1}{V} = \frac{1}{f} + \frac{1}{u}$	1/2
	$=-\frac{1}{21}-\frac{1}{14}$	1/
	<u> </u>	1/2
	$= \frac{-8.4}{-14} \times 3$	
	$\frac{111 - \frac{1}{0} - \frac{1}{u}}{0} = 1.8 \text{ cm}$	1/2
	image is errect and virtual of smallar size.	1/2
	As the object is moved away from the lens, the virtual image moves towards the focus of the lens but never beyond. The image progressively diminishes in size.	
27		
27	(i) proving that the electric field at a point due to a uniformly charged infinite plane sheet is independent of the distance from it.	2
	(ii)	
		1
	Conducting sphere having	1
	negative charge	
	(iii) $E = \overrightarrow{E_1} + \overrightarrow{E_2}$	
	(iii) $L - L_1 + L_2$	
	$= \frac{1}{4\pi\epsilon_0}.\frac{q_A}{r^2} + \frac{1}{4\pi\epsilon_0}\frac{q_B}{r^2} = \frac{1}{4\pi\epsilon_0 r^2} \big[q_A + q_B\big]$	
	$= \frac{9 \times 10^9}{(0.1)^2} [3 \times 10^{-6} + 3 \times 10^{-6}]$	
	= $5.4 \times 10^6 \text{NC}^{-1}$ along OB.	1
	$F=qE=8.1\times10^{-3}N$	
	OR	1
	(i)obtaining expression for the electric potential due to an electric dipole at any point on its	
	axis.	2
	(ii)	
		1

Electrical potential falls off at large distance, as $\frac{1}{r^2}$ and not as $\frac{1}{r}$, characteristic of the	
potential due to a single charge.	1
(iii) $U = \frac{1}{4\pi\varepsilon_0} \frac{ q_1 q_2 }{r} = 9 \times 10^9 \times \frac{7 \times (-2) \times 10^{-12}}{0.18} = -0.7 \text{ J}.$	1
$W = U_2 - U_1 = 0 - U = 0 - (-0.7) = 0.7 \text{ J}.$	